Free ANS-C01 Exam Braindumps (page: 14)

Page 13 of 56

A real estate company is building an internal application so that real estate agents can upload photos and videos of various properties. The application will store these photos and videos in an Amazon S3 bucket as objects and will use Amazon DynamoDB to store corresponding metadata. The S3 bucket will be configured to publish all PUT events for new object uploads to an Amazon Simple Queue Service (Amazon SQS) queue.
A compute cluster of Amazon EC2 instances will poll the SQS queue to find out about newly uploaded objects. The cluster will retrieve new objects, perform proprietary image and video recognition and classification update metadata in DynamoDB and replace the objects with new watermarked objects. The company does not want public IP addresses on the EC2 instances.
Which networking design solution will meet these requirements MOST cost-effectively as application usage increases?

  1. Place the EC2 instances in a public subnet. Disable the Auto-assign Public IP option while launching the EC2 instances. Create an internet gateway. Attach the internet gateway to the VPC. In the public subnet's route table, add a default route that points to the internet gateway.
  2. Place the EC2 instances in a private subnet. Create a NAT gateway in a public subnet in the same Availability Zone. Create an internet gateway. Attach the internet gateway to the VPC. In the public subnet's route table, add a default route that points to the internet gateway
  3. Place the EC2 instances in a private subnet. Create an interface VPC endpoint for Amazon SQS. Create gateway VPC endpoints for Amazon S3 and DynamoDB.
  4. Place the EC2 instances in a private subnet. Create a gateway VPC endpoint for Amazon SQS. Create interface VPC endpoints for Amazon S3 and DynamoDB.

Answer(s): C



A company has an AWS Direct Connect connection between its on-premises data center in the United States (US) and workloads in the us-east-1 Region. The connection uses a transit VIF to connect the data center to a transit gateway in us-east-1.
The company is opening a new office in Europe with a new on-premises data center in England. A Direct Connect connection will connect the new data center with some workloads that are running in a single VPC in the eu-west-2 Region. The company needs to connect the US data center and us-east-1 with the Europe data center and eu-west-2. A network engineer must establish full connectivity between the data centers and Regions with the lowest possible latency.
How should the network engineer design the network architecture to meet these requirements?

  1. Connect the VPC in eu-west-2 with the Europe data center by using a Direct Connect gateway and a private VIF. Associate the transit gateway in us-east-1 with the same Direct Connect gateway. Enable SiteLink for the transit VIF and the private VIF.
  2. Connect the VPC in eu-west-2 to a new transit gateway. Connect the Europe data center to the new transit gateway by using a Direct Connect gateway and a new transit VIF. Associate the transit gateway in us-east-1 with the same Direct Connect gateway. Enable SiteLink for both transit VIFs. Peer the two transit gateways.
  3. Connect the VPC in eu-west-2 to a new transit gateway. Connect the Europe data center to the new transit gateway by using a Direct Connect gateway and a new transit VIF. Create a new Direct Connect gateway. Associate the transit gateway in us-east-1 with the new Direct Connect gateway. Enable SiteLink for both transit VIFs. Peer the two transit gateways.
  4. Connect the VPC in eu-west-2 with the Europe data center by using a Direct Connect gateway and a private VIF. Create a new Direct Connect gateway. Associate the transit gateway in us-east-1 with the new Direct Connect gateway. Enable SiteLink for the transit VIF and the private VIF.

Answer(s): B



A network engineer has deployed an Amazon EC2 instance in a private subnet in a VPC. The VPC has no public subnet. The EC2 instance hosts application code that sends messages to an Amazon Simple Queue Service (Amazon SQS) queue. The subnet has the default network ACL with no modification applied. The EC2 instance has the default security group with no modification applied.
The SQS queue is not receiving messages.
Which of the following are possible causes of this problem? (Choose two.)

  1. The EC2 instance is not attached to an IAM role that allows write operations to Amazon SQS.
  2. The security group is blocking traffic to the IP address range used by Amazon SQS
  3. There is no interface VPC endpoint configured for Amazon SQS
  4. The network ACL is blocking return traffic from Amazon SQS
  5. There is no route configured in the subnet route table for the IP address range used by Amazon SQS

Answer(s): A,C


Reference:

https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-sending-messages-from-vpc.html



A network engineer needs to standardize a company's approach to centralizing and managing interface VPC endpoints for private communication with AWS services. The company uses AWS Transit Gateway for inter-VPC connectivity between AWS accounts through a hub-and-spoke model. The company's network services team must manage all Amazon Route 53 zones and interface endpoints within a shared services AWS account. The company wants to use this centralized model to provide AWS resources with access to AWS Key Management Service (AWS KMS) without sending traffic over the public internet.
What should the network engineer do to meet these requirements?

  1. In the shared services account, create an interface endpoint for AWS KMS. Modify the interface endpoint by disabling the private DNS name. Create a private hosted zone in the shared services account with an alias record that points to the interface endpoint. Associate the private hosted zone with the spoke VPCs in each AWS account.
  2. In the shared services account, create an interface endpoint for AWS KMS. Modify the interface endpoint by disabling the private DNS name. Create a private hosted zone in each spoke AWS account with an alias record that points to the interface endpoint. Associate each private hosted zone with the shared services AWS account.
  3. In each spoke AWS account, create an interface endpoint for AWS KMS. Modify each interface endpoint by disabling the private DNS name. Create a private hosted zone in each spoke AWS account with an alias record that points to each interface endpoint. Associate each private hosted zone with the shared services AWS account.
  4. In each spoke AWS account, create an interface endpoint for AWS KMS. Modify each interface endpoint by disabling the private DNS name. Create a private hosted zone in the shared services account with an alias record that points to each interface endpoint. Associate the private hosted zone with the spoke VPCs in each AWS account.

Answer(s): A






Post your Comments and Discuss Amazon ANS-C01 exam with other Community members:

ANS-C01 Discussions & Posts