Free ANS-C01 Exam Braindumps

A company delivers applications over the internet. An Amazon Route 53 public hosted zone is the authoritative DNS service for the company and its internet applications, all of which are offered from the same domain name.

A network engineer is working on a new version of one of the applications. All the application's components are hosted in the AWS Cloud. The application has a three-tier design. The front end is delivered through Amazon EC2 instances that are deployed in public subnets with Elastic IP addresses assigned. The backend components are deployed in private subnets from RFC1918.
Components of the application need to be able to access other components of the application within the application's VPC by using the same host names as the host names that are used over the public internet. The network engineer also needs to accommodate future DNS changes, such as the introduction of new host names or the retirement of DNS entries.

Which combination of steps will meet these requirements? (Choose three.)

  1. Add a geoproximity routing policy in Route 53.
  2. Create a Route 53 private hosted zone for the same domain name Associate the application’s VPC with the new private hosted zone.
  3. Enable DNS hostnames for the application's VP
  4. Create entries in the private hosted zone for each name in the public hosted zone by using the corresponding private IP addresses.
  5. Create an Amazon EventBridge (Amazon CloudWatch Events) rule that runs when AWS CloudTrail logs a Route 53 API call to the public hosted zone. Create an AWS Lambda function as the target of the rule. Configure the function to use the event information to update the private hosted zone.
  6. Add the private IP addresses in the existing Route 53 public hosted zone.

Answer(s): B,C,D



A company is deploying an application. The application is implemented in a series of containers in an Amazon Elastic Container Service (Amazon ECS) cluster. The company will use the Fargate launch type for its tasks. The containers will run workloads that require connectivity initiated over an SSL connection. Traffic must be able to flow to the application from other AWS accounts over private connectivity. The application must scale in a manageable way as more consumers use the application.
Which solution will meet these requirements?

  1. Choose a Gateway Load Balancer (GLB) as the type of load balancer for the ECS service. Create a lifecycle hook to add new tasks to the target group from Amazon ECS as required to handle scaling. Specify the GLB in the service definition. Create a VPC peer for external AWS accounts. Update the route tables so that the AWS accounts can reach the GLB.
  2. Choose an Application Load Balancer (ALB) as the type of load balancer for the ECS service. Create path-based routing rules to allow the application to target the containers that are registered in the target group. Specify the ALB in the service definition. Create a VPC endpoint service for the ALB Share the VPC endpoint service with other AWS accounts.
  3. Choose an Application Load Balancer (ALB) as the type of load balancer for the ECS service. Create path-based routing rules to allow the application to target the containers that are registered in the target group. Specify the ALB in the service definition. Create a VPC peer for the external AWS accounts. Update the route tables so that the AWS accounts can reach the ALB.
  4. Choose a Network Load Balancer (NLB) as the type of load balancer for the ECS service. Specify the NLB in the service definition. Create a VPC endpoint service for the NLB. Share the VPC endpoint service with other AWS accounts.

Answer(s): D



A company's development team has created a new product recommendation web service. The web service is hosted in a VPC with a CIDR block of 192.168.224.0/19. The company has deployed the web service on Amazon EC2 instances and has configured an Auto Scaling group as the target of a Network Load Balancer (NLB).

The company wants to perform testing to determine whether users who receive product recommendations spend more money than users who do not receive product recommendations. The company has a big sales event in 5 days and needs to integrate its existing production environment with the recommendation engine by then. The existing production environment is hosted in a VPC with a CIDR block of 192.168.128 0/17.

A network engineer must integrate the systems by designing a solution that results in the least possible disruption to the existing environments.
Which solution will meet these requirements?

  1. Create a VPC peering connection between the web service VPC and the existing production VPC. Add a routing rule to the appropriate route table to allow data to flow to 192.168.224.0/19 from the existing production environment and to flow to 192.168.128.0/17 from the web service environment. Configure the relevant security groups and ACLs to allow the systems to communicate.
  2. Ask the development team of the web service to redeploy the web service into the production VPC and integrate the systems there.
  3. Create a VPC endpoint service. Associate the VPC endpoint service with the NLB for the web service. Create an interface VPC endpoint for the web service in the existing production VP
  4. Create a transit gateway in the existing production environment. Create attachments to the production VPC and the web service VPC. Configure appropriate routing rules in the transit gateway and VPC route tables for 192.168.224.0/19 and 192.168.128.0/17. Configure the relevant security groups and ACLs to allow the systems to communicate.

Answer(s): C



A network engineer needs to update a company's hybrid network to support IPv6 for the upcoming release of a new application. The application is hosted in a VPC in the AWS Cloud. The company's current AWS infrastructure includes VPCs that are connected by a transit gateway. The transit gateway is connected to the on-premises network by AWS Direct Connect and AWS Site-to-Site VPN. The company's on-premises devices have been updated to support the new IPv6 requirements.
The company has enabled IPv6 for the existing VPC by assigning a new IPv6 CIDR block to the VPC and by assigning IPv6 to the subnets for dual-stack support. The company has launched new Amazon EC2 instances for the new application in the updated subnets.

When updating the hybrid network to support IPv6 the network engineer must avoid making any changes to the current infrastructure. The network engineer also must block direct access to the instances' new IPv6 addresses from the internet. However, the network engineer must allow outbound internet access from the instances.

What is the MOST operationally efficient solution that meets these requirements?

  1. Update the Direct Connect transit VIF and configure BGP peering with the AWS assigned IPv6 peering address. Create a new VPN connection that supports IPv6 connectivity. Add an egress-only internet gateway. Update any affected VPC security groups and route tables to provide connectivity within the VPC and between the VPC and the on-premises devices
  2. Update the Direct Connect transit VIF and configure BGP peering with the AWS assigned IPv6 peering address. Update the existing VPN connection to support IPv6 connectivity. Add an egress-only internet gateway. Update any affected VPC security groups and route tables to provide connectivity within the VPC and between the VPC and the on-premises devices.
  3. Create a Direct Connect transit VIF and configure BGP peering with the AWS assigned IPv6 peering address. Create a new VPN connection that supports IPv6 connectivity. Add an egress-only internet gateway. Update any affected VPC security groups and route tables to provide connectivity within the VPC and between the VPC and the on-premises devices.
  4. Create a Direct Connect transit VIF and configure BGP peering with the AWS assigned IPv6 peering address. Create a new VPN connection that supports IPv6 connectivity. Add a NAT gateway. Update any affected VPC security groups and route tables to provide connectivity within the VPC and between the VPC and the on-premises devices.

Answer(s): B

Explanation:

In this scenario, the network engineer needs to update the hybrid network to support IPv6 without making changes to the current infrastructure. The company has already enabled IPv6 for the VPC by assigning a new IPv6 CIDR block to the VPC and assigning IPv6 addresses to the subnets for dual-stack support.

Option B suggests updating the Direct Connect transit VIF and configuring BGP peering with the AWS assigned IPv6 peering address. This allows the company's on-premises devices to establish IPv6 connectivity with the VPC.

The option also suggests updating the existing VPN connection to support IPv6 connectivity. This ensures that the VPC and the on-premises devices can communicate over IPv6 through the VPN connection.

Additionally, an egress-only internet gateway is added to block direct access to the instances' new IPv6 addresses from the internet while allowing outbound internet access from the instances. This provides the necessary security and connectivity requirements.

Finally, any affected VPC security groups and route tables should be updated to allow connectivity within the VPC and between the VPC and the on-premises devices. This ensures proper routing and communication between the different network components.






Post your Comments and Discuss Amazon ANS-C01 exam with other Community members:

ANS-C01 Discussions & Posts