Free DP-100 Exam Braindumps (page: 23)

Page 22 of 127

You create an Azure Machine Learning workspace.
You must create a custom role named DataScientist that meets the following requirements:
-Role members must not be able to delete the workspace.
-Role members must not be able to create, update, or delete compute resources in the workspace.
-Role members must not be able to add new users to the workspace.
You need to create a JSON file for the DataScientist role in the Azure Machine Learning workspace.
The custom role must enforce the restrictions specified by the IT Operations team.
Which JSON code segment should you use?





Answer(s): A

Explanation:

The following custom role can do everything in the workspace except for the following actions:
- It can't create or update a compute resource.
- It can't delete a compute resource.
- It can't add, delete, or alter role assignments.
- It can't delete the workspace.
To create a custom role, first construct a role definition JSON file that specifies the permission and scope for the role. The following example defines a custom role named "Data Scientist Custom" scoped at a specific workspace level: data_scientist_custom_role.json :
{
"Name": "Data Scientist Custom",
"IsCustom": true,
"Description": "Can run experiment but can't create or delete compute.",
"Actions": ["*"],
"NotActions": [
"Microsoft.MachineLearningServices/workspaces/*/delete",
"Microsoft.MachineLearningServices/workspaces/write",
"Microsoft.MachineLearningServices/workspaces/computes/*/write",
"Microsoft.MachineLearningServices/workspaces/computes/*/delete",
"Microsoft.Authorization/*/write"
],
"AssignableScopes": [
"/subscriptions/<subscription_id>/resourceGroups/<resource_group_name>/providers/Microsoft.MachineLearningServices/workspaces/
<workspace_name>"
]
}


Reference:

https://docs.microsoft.com/en-us/azure/machine-learning/how-to-assign-roles



Note: This question is part of a series of questions that present the same scenario. Each question in the series contains a unique solution that might meet the stated goals. Some question sets might have more than one correct solution, while others might not have a correct solution.
After you answer a question in this section, you will NOT be able to return to it. As a result, these questions will not appear in the review screen.
You are a data scientist using Azure Machine Learning Studio.
You need to normalize values to produce an output column into bins to predict a target column.
Solution: Apply an Equal Width with Custom Start and Stop binning mode.
Does the solution meet the goal?

  1. Yes
  2. No

Answer(s): B

Explanation:

Use the Entropy MDL binning mode which has a target column.


Reference:

https://docs.microsoft.com/en-us/azure/machine-learning/studio-module-reference/group-data-into-bins



Note: This question is part of a series of questions that present the same scenario. Each question in the series contains a unique solution that might meet the stated goals. Some question sets might have more than one correct solution, while others might not have a correct solution.
After you answer a question in this section, you will NOT be able to return to it. As a result, these questions will not appear in the review screen.
You are a data scientist using Azure Machine Learning Studio.
You need to normalize values to produce an output column into bins to predict a target column.
Solution: Apply a Quantiles binning mode with a PQuantile normalization.
Does the solution meet the goal?

  1. Yes
  2. No

Answer(s): A

Explanation:

Use the Entropy MDL binning mode which has a target column.


Reference:

https://docs.microsoft.com/en-us/azure/machine-learning/studio-module-reference/group-data-into-bins



HOTSPOT (Drag and Drop is not supported)
You are evaluating a Python NumPy array that contains six data points defined as follows: data = [10, 20, 30, 40, 50, 60]
You must generate the following output by using the k-fold algorithm implantation in the Python Scikit-learn machine learning library: train: [10 40 50 60], test: [20 30] train: [20 30 40 60], test: [10 50] train: [10 20 30 50], test: [40 60]
You need to implement a cross-validation to generate the output.
How should you complete the code segment? To answer, select the appropriate code segment in the dialog box in the answer area.
NOTE: Each correct selection is worth one point.
Hot Area:

  1. See Explanation section for answer.

Answer(s): A

Explanation:


Box 1: k-fold
Box 2: 3
K-Folds cross-validator provides train/test indices to split data in train/test sets. Split dataset into k consecutive folds (without shuffling by default).
The parameter n_splits ( int, default=3) is the number of folds. Must be at least 2.
Box 3: data
Example: Example:
>>>
>>> from sklearn.model_selection import KFold
>>> X = np.array([[1, 2], [3, 4], [1, 2], [3, 4]])
>>> y = np.array([1, 2, 3, 4])
>>> kf = KFold(n_splits=2)
>>> kf.get_n_splits(X)
>>> print(kf)
KFold(n_splits=2, random_state=None, shuffle=False)
>>> for train_index, test_index in kf.split(X):
... print("TRAIN:", train_index, "TEST:", test_index)
... X_train, X_test = X[train_index], X[test_index]
... y_train, y_test = y[train_index], y[test_index]
TRAIN: [2 3] TEST: [0 1]
TRAIN: [0 1] TEST: [2 3]


Reference:

https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.KFold.html






Post your Comments and Discuss Microsoft DP-100 exam with other Community members:

DP-100 Exam Discussions & Posts